B-(3,3-Difluoroallyl)diisopinocampheylborane for the Enantioselective Fluoroallylboration of Aldehydes

P. Veeraraghavan Ramachandran,* Agnieszka Tafelska-Kaczmarek,[‡] and Anamitra Chatterjee

Herbert C. Brown Center for Borane Research, Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States

Supporting Information

ABSTRACT: The fluoroallylboration of aldehydes with *B*-(3,3-difluoroallyl)diisopinocampheylborane, which was prepared via the hydroboration of 1,1difluoroallene, provides chiral 2,2-*gem*-difluorinated homoallylic alcohols in good yields and 91–97% ee.

F luorine substitution often alters the reactivity and reaction mechanism of organic molecules.¹ Medicinal chemists undertake this exercise to alter the biological properties of such molecules, with the aim of identifying more potent and bioavailable molecules.² Geminal difluorinated aliphatic fluoro-organic molecules are particularly attractive due to their unique pharmacological properties.³ As part of our program involving fluoro-organic synthesis via boranes,⁴ we had reported the preparation and reactions of racemic and chiral 2-benzyloxy-(3,3-difluoroallyl)boronates **1** and **2**, respectively (Figure 1), for the synthesis of 2,2-gem-difluorinated homoallyl alcohols and derivatives.⁵

Figure 1. (3,3-Difluoroallyl)boronates.

We had also reported a low yield ($\leq 20\%$) synthesis of the parent camphanediol (3,3-difluoroallyl)boronate 4^{5b} from 2,2difluorovinyllithium⁶ and the corresponding camphanediol iodomethylboronate.⁷ The importance of the products 2,2difluoro-1-aryl/alkylbut-3-en-1-ols as useful building blocks for the synthesis of bioactive molecules,⁸ led us to re-examine the synthesis of racemic and chiral (3,3-difluoroallyl)boronate reagents 3 and 4. While racemic 2,2-difluoro-1-aryl/alkylbut-3-en-1-ols have been reported via the addition of gem-difluoroallylmetals (Si,⁹ In,¹⁰ Li,¹¹ Sn,¹² Zn¹³) to aldehydes and ketones, to the best of our knowledge, chiral 2,2-gemdifluorohomoallyl alcohols are accessed via a lipase-mediated enzymatic resolution of racemic alcohols.¹⁴ Reported herein are the improved synthesis of asymmetric (3,3-difluoroallyl)boronate, the failed asymmetric allylboration with 4, and finally, the successful preparation and reactions of difluoroallylborane-derived from α -pinene.

Diisopropyl (3,3-difluoroallyl)boronate (3) prepared via the homologation¹⁵ of 2,2-difluorovinyllithium⁶ with diisopropyl

iodomethylboronate¹⁶ (Scheme 1) was found to be unstable for storage. Hence, the difluoroallylboration of benzaldehyde (5a)

√)2B

F 1) RCHO

Scheme 1. Preparation of (3,3-Difluoroallyl)boronates 3 and 4

was examined with in situ generated reagents, and the optimal conditions were identified (Table 1).

The allylboration of benzaldehyde (**5a**) with **3** in THF at room temperature, monitored by ¹¹B NMR spectroscopy (chemical shift change from δ 30 to 18 ppm), furnished 2,2difluoro-1-phenylbut-3-en-1-ol (**6a**) in only 15% yield. On the basis of Lewis acid catalyzed allylboration with allylboronates,¹⁷ the reaction was examined in the presence of 10 mol % Sc(OTf)₃, which improved the yield to 43%. Raising the temperature to reflux further improved the yield to 67%. Increasing the catalyst loading to 20 mol % and the reaction time to 48 h did not improve the yield. Changing the catalyst to In(OTf)₃ (10 mol %) yielded 38% of the homoallylic alcohol. The influence of the solvent was then examined. Unlike the benzyloxy reagent **1**, the parent reagent **3** was only sparingly soluble in pentane. The reaction failed in refluxing dichloromethane (48 h); refluxing in toluene decomposed the reagent.

With the standardized reaction conditions, the fluoroallylboration of additional aldehydes was carried out (Table 2).

Received: May 22, 2012 Published: September 13, 2012 Table 1. Difluoroallylboration of Benzaldehyde (5a) with 3; Optimization of Conditions^a

^{*a*}Reactions were carried out with 1.5 equiv of crude reagent. ^{*b*}10 mol % of the Lewis acid was used, unless otherwise stated. ^{*c*}Isolated yields of pure products. ^{*d*}No reaction observed. ^{*c*}Decomposition of reagent 3. ^{*f*}No reaction due to the poor solubility of the reagent.

Table 2. Difluoroallylboration of Aldehydes 5 with 3^{a}

entry	RCHO (5)	R	6	time (h)	vield ^{b} (%)	
,					/	
1	5a	C_6H_5	6a	24	67	
2	5b	p-MeO-C ₆ H ₄	6b	48	33	
3	5c	2-Naphthyl	6c	38	25	
4	5d	$C_6H_5(CH_2)_2$	6d	48	62	
^a Reactio	ons were carrie	ed out in THF a	t reflux	with 1.5 eq	uiv of crude	

reagent and 10 mol % of Sc(OTf)₃. ^bIsolated yields of pure products.

Surprisingly, low yields, 33% and 25%, respectively, were obtained for the allylboration of *p*-anisaldehyde (**5b**) and 2-naphthaldehyde (**5c**). Hydrocinnamaldehyde (**5d**) afforded the product in 62% isolated yield. The factors influencing the low yield are not clear at this point, although similar homoallylic alcohols have been found to undergo the elimination of fluoride under basic conditions.¹⁸ It is noteworthy that diisopropyl (3,3-difluoroallyl)boronate (**3**) is less reactive than the 2-benzyloxy-substituted reagent **1**. This could be due to increased electron density of the vinylic ether, a fact which should favor the allyl transfer.

We were able to significantly improve upon our previous results, ^{Sb} enhancing the yield of (1R,3S)-1,2,2-trimethylcyclopent-1,3-diyl (4R)-2-(3,3-difluoroprop-2-enyl)-4-phenyl-1,3,2-dioxaborolane (4) from $\leq 20\%$ to 80%, simply by decreasing the reaction temperature. Unlike the achiral reagent, 4 is stable to silica gel chromatography and the yield represents isolated yield of the pure reagent and further reactions were carried out using pure reagent. The fluoroallylboration of aldehydes with 4 was also facilitated by the presence of a Lewis acid, higher reaction temperature, and longer reaction times (Scheme 2). Allylborations were carried out with 1.25 equiv of reagent 4 in the presence of 10 mol % of Sc(OTf)₃ at reflux in THF and

Scheme 2. Asymmetric Difluoroallylboration of Aldehydes 5 with 4

were monitored by the ¹¹B NMR spectroscopy (chemical shift change from δ 33 to 22 ppm).

As in the case of the racemic fluoroallylboration (Table 1), no reaction took place in dichloromethane and decomposition was observed in toluene. Allylboration of benzaldehyde (**5a**) afforded the chiral homoallyl alcohol (*R*)-**6a** in 38% yield and surprisingly low 20% ee, as was determined by ¹H and ¹⁹F NMR analysis of the corresponding α -methoxy α,α,α trifluoromethylphenyl acetates (Mosher esters).¹⁹ The configuration of the alcohol was assigned on the basis of the sign of the optical rotation of the alcohol, as reported in the literature.¹⁴

The use of $In(OTf)_3$ (20 mol %) decreased the ee to 12%, but with similarly poor yield (37%). Low enantioselectivity (20%) was also observed for *p*-anisaldehyde (**5b**), where the reaction required 4.5 days (¹¹B NMR).

The disappointing results from chiral (3,3-difluoroallyl)boronates and the established success of pinane-mediated allyl-, crotyl-, and alkoxyallylborations²⁰ prompted the preparation of *B*-(3,3-difluoroallyl)diisopinocampheylborane and fluoroallylboration of aldehydes. Hydroboration of substituted allenes have been utilized for the preparation of novel achiral and chiral allylboranes.²¹ Accordingly, we examined the hydroboration of 1,1-difluoroallene with racemic and chiral diisopinocampheylborane (Ipc₂BH) (Scheme 3).

The successful, reagent-dependent, and regioselective hydroboration of a variety of fluoroolefins have been described by us earlier.²² Hydroboration of fluoroalkynes have also been reported in the literature.²³ However, there has been no report on the hydroboration of fluoroallenes. Accordingly, freshly prepared 1,1-difluoroallene,²⁴ was added to a suspension of (–)-Ipc₂BH in diethyl ether at -78 °C and was warmed to 0 °C over 3 h, whereafter the reaction medium became homogeneous. The ¹¹B NMR spectrum revealed two peaks at δ 79 and 49 ppm in a 7:3 ratio, presumably corresponding to the difluoroallylborane 7 and (2,2-difluoro-1-methylvinyl)-borane (on the basis of ¹¹B NMR of vinylboranes) (Scheme 3).

Benzaldehyde (5a) was added to the above mixture at -78°C, and the reaction, which was monitored by ¹¹B NMR spectroscopy, was complete within 4 h. The NMR spectrum revealed a broad peak at δ 50 ppm, along with a shoulder peak, presumably due to the unreacted vinylborane. Alkaline oxidative workup with hydrogen peroxide over 12 h at rt, provided the expected 2,2-difluoro-1-phenylbut-3-en-1-ol (6a) in 43% yield, based on the allylborane present in the medium. Since allylboration has been shown to be a fast reaction even at low temperatures,²⁵ the yield of **6a** is most likely limited by the formation of the allylborane from hydroboration. ¹H and ¹⁹F NMR analysis of the Mosher ester derivative of 6a revealed an enantiomeric excess of 94%, and a configurational assignment of R.¹⁴ It is observed that the stereochemistry of the product of the reaction with difluoroallylborane 7 is the same as that of the nonfluorinated analogue.²⁵

Solvents such as THF, pentane, and CH_2Cl_2 decreased the yield of the reaction. Although there was no change in the enantioselectivity, lowering the allylboration temperature to -100 °C improved the yield to 72%. The use of catalytic $Sc(OTf)_3$ did not improve the yield or enantioselectivity. Accordingly, further diffuoroallylboration of a series of aldehydes with 7 was carried out at this temperature (Table 3). *p*-Anisaldehyde (**5b**) provided (*R*)-**6b** in 71% yield and 93% ee. Similarly, high ee (94%) was obtained for 2-naphthaldehyde (**5c**) as well. While α,β -unsaturated aldehyde, cinnamaldehyde

Table 3. Asymmetric Difluoroallylboration of Aldehydes 5 with 7^a in Et₂O

entry	5	R	temp (°C)	(R)- 6 ⁶	yield ^c (%)	ee^d (%)
1	5a	C ₆ H ₅	-78	6a	43	94
2	5a	C ₆ H ₅	-100	6a	72	94
3	5b	p-MeO-C ₆ H ₄	-100	6b	71	93
3	5c	2-Naphthyl	-100	6c	70	94
5	5d	$C_6H_5(CH_2)_2$	-100	6d	76	97
6	5e	E-C ₆ H ₅ CH=CH	-100	6e	70	91
7	5f	2-Furyl	-100	6f	69	92

^{*a*}Reactions were carried out with 1 equiv of crude reagent over 4 h. ^{*b*}Determined by comparison of the optical rotation with those of known compounds.¹⁴ ^{*c*}Yields of pure products based on the number of equivalents of reagent in the mixture. ^{*d*}Determined by ¹H and ¹⁹F NMR analysis of Mosher esters.

(5e) afforded the product in 91% ee, hydrocinnamaldehyde (5d) afforded the highest ee, 97%, for the homoallylic alcohol in 76% yield. A heteroaromatic aldehyde, 2-furaldehyde (5f), provided the product in 69% yield and 92% ee. It is gratifying to note that pinane-derived reagent 7 provides very high ee for the allylboration, even with the presence of the fluorine atoms. In comparison, the camphor-derived allylboronate reagent 4 provides poor ee.

In conclusion, higher yields were achieved for the synthesis of racemic and chiral (3,3-difluoroallyl)boronates, although the allylboration results in poor yields and ee of the homoallyl alcohols. The hydroboration of 1,1-difluoroallene with diisopinocampheylborane provides a 7:3 mixture of the corresponding (3,3-difluoroallyl)- and (2,2-difluoro-1-methyl-vinyl) borane. Difluoroallylboration of representative aldehydes with B-(3,3-difluoroallyl)diisopinocampheylborane provides 2,2-gem-difluorinated homoallyl alcohols in good yields and high ee.

EXPERIMENTAL SECTION

General Information. Unless otherwise noted, all manipulations were carried out under inert atmosphere in flame-dried glassware. Tetrahydrofuran (THF) was freshly distilled before use from sodium benzophenone ketyl. All other chemicals and solvents were purchased commercially and used without further purification, unless otherwise noted.

The ¹H, ¹⁹F, ¹³C, and ¹¹B nuclear magnetic resonance (NMR) spectra were plotted on 300 MHz spectrometer with Nalorac-quad probes using CDCl₃ as a solvent at room temperature. The NMR chemical shifts (δ) are reported in ppm. Abbreviations for ¹H and ¹⁹F NMR: s = singlet, d = doublet, m = multiplet, b = broad, t = triplet, q = quartet. High-resolution mass spectra were obtained by electro spray impact ionization in combination with a single quadrupole mass analyzer. The reactions were monitored by TLC using silica gel F₂₅₄ precoated plates. Flash chromatography was performed using flash grade silica gel (particle size: 40–63 μ m, 230 × 400 mesh). Optical rotations were measured on an automatic polarimeter at the Na D line (λ = 589 nm) using a 1 dm cell.

Preparation of diisopropyl iodomethylboronate,¹⁶ (1R,2R,3R,4S)-4iodomethyl-1,10,10-trimethyl-2-phenyl-3,5-dioxa-4-boratricyclo-[$5.2.1.0^{0,0}$]decane,⁷ 1,1-difluoropropa-1,2-diene,²⁴ (-)-diisopinocampheylborane²⁶ were achieved as reported.

1. General Procedure for the One-Pot Synthesis of Diisopropyl (3,3-Difluoroallyl)Boronate (3) and Procedure for the Difluoroallylboration of Aldehydes for the Preparation of 6a-d. To a solution of 1,1-difluoroethene (1.14 mL, 10.64 mmol) in THF (10 mL) and diethyl ether (2.5 mL) at -110 °C was added dropwise s-BuLi (3.80 mL, 1.4 M in cyclohexane, 5.32 mmol). The reaction mixture was stirred at the same temperature for 15 min and then diisopropyl iodomethylboronate (1.58 g, 5.85 mmol) was slowly added at -100 °C. After 40 min at this temperature, the mixture was stirred at rt for 2 h and filtered through a short bed of Celite. The solvents were removed under vacuum and the crude difluoroallylboronate 3 was then dissolved in THF (3.5 mL), aldehyde (3.52 mmol), and Sc(OTf)₃ (0.17 g, 0.35 mmol) were added, and the reaction mixture was refluxed for 24 h (¹¹B NMR shift from δ 29.5 to 18 ppm). The reaction was quenched with satd aq NH₄Cl solution (5 mL), and the product was extracted with diethyl ether, washed with brine, dried (anhyd MgSO₄), filtered, and concentrated. The residue was purified by flash silica gel chromatography (hexane/ethyl acetate = 8:1) to yield homoallyl alcohols 6a-d. The spectral data were consistent with those reported in the literature.^{8c,12,14,27}

2. General Procedure for the Synthesis of (1R,3S)-1,2,2-Trimethylcyclopent-1,3-diyl (4R)-2-(3,3-difluoroprop-2-enyl)-4-phenyl-1,3,2-dioxaborolane (4). To a solution of 1,1-difluoroethene (0.85 mL, 7.96 mmol) in THF (7.5 mL) and diethyl ether (1.9 mL) at -110 °C was added dropwise s-BuLi (2.85 mL, 1.4 M in cyclohexane, 3.98 mmol). The reaction mixture was stirred at the same temperature for 15 min, and then (1R,2R,3R,4S)-4-iodomethyl-1,10,10-trimethyl-2phenyl-3,5-dioxa-4-boratricyclo[5.2.1.0^{0,0}]decane⁷ (1.74 g, 4.38 mmol) was slowly added at -100 °C. After 40 min at this temperature, the mixture was stirred at rt for 2 h and filtered through a short bed of Celite. The solvents were removed and the residue was purified by flash silica gel chromatography (hexane/ethyl acetate = 8:1) to yield difluoroallylboronate 4 as a light yellow oil (1.06 g, 80%). Rr. 0.55 (hexane/ethyl acetate = 8:1). ¹H NMR (300 MHz, $CDCl_3$): δ 7.44– 7.29 (m, 5H), 4.75 (s, 1H), 4.19 (dtd, J = 25.5, 7.8, and 2.4 Hz, 1H), 2.16 (d, J = 5.1 Hz, 1H), 1.89–1.81 (m, 1H), 1.51 (d, J = 7.8 Hz, 1H), 1.22 (s, 3H), 1.20-1.15 (m, 2H), 1.10-1.00 (m, 1H), 0.97 (s, 3H), 0.94 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –91.73 (d, J = 50.5 Hz, 1F), -94.62 (dd, I = 50.5 and 25.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 155.9 (t, J = 282.5), 141.4, 127.4, 127.2, 126.5, 95.9, 88.7, 73.3 (t, J = 23.3 Hz), 51.9, 50.1, 48.7, 29.4, 24.6, 23.4, 20.5, 9.2. ¹¹B NMR (96 MHz, CDCl₃): δ 33.2. MS EI: m/z = 332 [M⁺]. HRMS (ESI): calcd for C₁₉H₂₃BF₂O₂ 332.1759, found 332.1765.

General Procedure for the Difluoroallylboration of Aldehydes Using Reagent 4. To a solution of chiral (3,3-difluoroallyl)boronate 4 (1.25 mmol) in THF (1 mL) were added aldehyde 5 (1.00 mmol) and Sc(OTf)₃ (0.10 mmol), and the reaction mixture was refluxed for the desired time (shown in Table 3) (¹¹B NMR shift from δ 33.2 to 22.4 ppm). The reaction was quenched with satd aq NH₄Cl solution (1.5 mL), and the product was extracted with diethyl ether, washed with brine, dried (anhyd. MgSO₄), filtered, and concentrated. The residue was purified by flash silica gel chromatography to yield homoallyl alcohol 6.

3. General Procedure for the One Pot Synthesis of B-(3,3-Difluoroallyl)Diisopinocampheylborane (7) and Representative Procedure for the Difluoroallylboration of Aldehydes for the Preparation of (R)-2,2-Difluoro-1-phenylbut-3-en-1-ol [(R)-**6a**]. To

The Journal of Organic Chemistry

a suspension of (-)-Ipc₂BH²⁶ (1.25 g, 4.38 mmol) in Et₂O (10 mL) at -78 °C was added 1,1-difluoropropa-1,2-diene²⁴ (0.50 g, 6.57 mmol). After the mixture was stirred for 3 h at 0 °C, the solid dissolved completely, indicating the completion of hydroboration (¹¹B NMR δ 79 and 49 ppm, ratio 7:3). The reaction mixture was cooled to -100°C, and benzaldehyde (5a) (0.46 g, 4.38 mmol) was added dropwise. The mixture was stirred at this temperature for 4 h (¹¹B NMR: δ 79 ppm to 50 ppm), oxidized with 3 M NaOH (3.2 mL) and 30% H₂O₂ (3.2 mL), and stirred at rt for 12 h. The product was extracted with diethyl ether, washed with brine, dried (anhyd. MgSO₄), filtered, and concentrated. The residue was purified by flash silica gel chromatography (hexane/ethyl acetate = 8:1) to yield homoallyl alcohol (R)-6a as a colorless viscous liquid (0.36 g, 45%, calculated to 72% on the basis of 7:3 mixture of the reagents). $R_f = 0.21$ (hexane/ ethyl acetate = 8:1). $[\alpha]_{D}^{23} = -16.96$ (c 1.25, CHCl₃), 94% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester (lit. ¹⁴ $[\alpha]^{23}_{D}$ = -14.7 (c 1.13, CHCl₃), 79% ee). ¹H NMR (300 MHz, CDCl₃): δ 7.42-7.35 (m, 5H), 5.86 (ddd, J = 23.1, 17.4, and 11.1 Hz, 1H), 5.59 (d, J = 17.4 Hz, 1H), 5.46 (d, J = 11.1 Hz, 1H), 4.88 (t, J = 9.6 Hz, 10.1 Hz)1H), 2.81 (bs, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –109.32 (dt, J = 246.4 and 10.4 Hz, 1F), -110.99 (dt, J = 246.4 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 135.9, 129.2 (t, J = 25.5 Hz), 128.6, 128.1, 127.5, 121.5 (t, J = 8.7 Hz), 119.5 (t, J = 243.1 Hz), 75.7 (td, J = 29.6 and 5.8 Hz). MS EI: m/z = 184 [M⁺]. HRMS (ESI): calcd for C₁₀H₁₀F₂O 184.0700, found 184.0711.

(*R*)-2,2-Difluoro-1-(4-methoxyphenyl)but-3-en-1-ol [(*R*)-6b]. A colorless viscous liquid, 0.50 g, 44% (calculated to 71% on the basis of 7:3 mixture of the reagents). R_f 0.09 (hexane/ethyl acetate = 8:1). $[\alpha]^{23}_{D} = -19.75$ (c 1.55, CHCl₃), 93% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester (lit.¹⁴ $[\alpha]^{23}_{D} = -20.2$ (c 1.01, CHCl₃), 94% ee). ¹H NMR (300 MHz, CDCl₃): δ 7.33 (d, J = 8.7 Hz, 2H), 6.91–6.86 (m, 2H), 5.86 (ddd, J = 23.4, 17.4, and 11.1 Hz, 1H), 5.59 (dtd, J = 17.4, 2.4, and 0.9 Hz, 1H), 5.46 (d, J = 11.1 Hz, 1H), 4.84 (td, J = 9.6 and 3.0 Hz, 1H), 3.81 (s, 3H), 2.63 (d, J = 3.6 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –109.59 (dt, J = 245.9 and 10.4 Hz, 1F), –111.17 (dt, J = 245.9 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 159.7, 129.4 (t, J = 29.6 and 7.3 Hz), 55.1. MS EI: m/z = 214 [M⁺]. HRMS (ESI): calcd for C₁₁H₁₂F₂O₂ 214.0805, found 214.0811.

(*R*)-2,2-Difluoro-1-(naphthalen-2-yl)but-3-en-1-ol [(*R*)-6c]. A light yellow oil, 0.53 g, 48% (calculated to 70% on the basis of 7:3 mixture of the reagents). R_f 0.33 (hexane/ethyl acetate = 8:2). $[\alpha]^{23}_{\rm D} = -15.56$ (*c* 1.08, CHCl₃), 94% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.89–7.83 (m, 4H), 7.55–7.49 (m, 3H), 5.88 (ddd, *J* = 23.4, 17.4, and 11.1 Hz, 1H), 5.61 (dt, *J* = 17.1 and 2.0 Hz, 1H), 5.46 (d, *J* = 10.8 Hz, 1H), 5.09 (t, *J* = 9.3 Hz, 1H), 2.62 (bs, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -109.03 (dt, *J* = 246.7 and 10.4 Hz, 1F), -110.46 (dt, *J* = 246.7 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 133.3, 132.8, 129.2 (t, *J* = 25.5 Hz), 128.1, 127.8, 127.6, 127.0, 126.3, 126.2, 124.9, 121.6, 119.6 (t, *J* = 243.4 Hz), 75.9 (td, *J* = 29.7 and 6.7 Hz). MS EI: *m*/*z* = 234 [M⁺]. HRMS (ESI): calcd for C₁₄H₁₂F₂O 234.0856, found 234.0859.

(*R*)-4,4-Difluoro-1-phenylhex-5-en-3-ol [(*R*)-6d]. A colorless liquid, 0.64 g, yield 53% (calculated to 76% on the basis of 7:3 mixture of the reagents). R_f 0.20 (hexane/ethyl acetate = 8:1). $[\alpha]^{23}_{D}$ = +33.82 (c 0.76, CHCl₃), 97% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.23–7.18 (m, 3H), 6.05–5.88 (m, 1H), 5.71 (d, *J* = 17.4 Hz, 1H), 5.54 (d, *J* = 11.1 Hz, 1H), 3.82–3.73 (m, 1H), 2.93 (ddd, *J* = 14.1, 9.3, and 4.8 Hz, 1H), 2.76–2.66 (m, 1H), 1.99 (d, *J* = 5.1 Hz, 1H), 1.96–1.87 (m, 1H), 1.84–1.71 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –110.26 (dt, *J* = 248.7 and 10.1 Hz, 1F), –113.71 (dt, *J* = 248.7 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 141.0, 129.5 (t, *J* = 25.8 Hz), 128.4, 126.0, 121.3 (t, *J* = 8.8 Hz), 120.2 (t, *J* = 241.5 Hz), 72.5 (t, *J* = 29.0 Hz), 31.6, 31.4. MS EI: m/z = 212 [M⁺]. HRMS (ESI): calcd for C₁₂H₁₄F₂O 212.1013, found 212.1015.

(*R*,*E*)-4,4-Difluoro-1-phenylhexa-1,5-dien-3-ol [(*R*)-6e]. A colorless oil, 0.39 g, yield 48% (calculated to 70% on the basis of 7:3

mixture of the reagents). R_f 0.15 (hexane/ethyl acetate = 9:1). $[\alpha]^{23}_{D}$ = +7.22 (*c* 1.15, CHCl₃), 91% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.43–7.28 (m, SH), 6.78 (d, *J* = 15.6 Hz, 1H), 6.20 (dd, *J* = 15.6 and 5.7 Hz, 1H), 6.01 (ddd, *J* = 23.1, 17.4, and 11.1 Hz, 1H), 5.75 (dtd, *J* = 17.4 Hz, 2.1 and 0.9 Hz, 1H), 5.57 (d, *J* = 11.1 Hz, 1H), 4.57–4.46 (m, 1H), 2.23 (d, *J* = 5.1 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –109.99 (dt, *J* = 247.8 and 10.1 Hz, 1F), –112.10 (dt, *J* = 247.8 and 10.1 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 135.8, 134.5, 129.5 (t, *J* = 25.4 Hz), 128.5, 128.2, 126.6, 123.0, 121.6 (t, *J* = 9.0 Hz), 119.3 (t, *J* = 242.5 Hz), 74.4 (td, *J* = 29.8 and 4.8 Hz). MS EI: *m/z* = 210 [M⁺]. HRMS (ESI): calcd for C₁₂H₁₂F₂O 210.0856, found 210.0859.

(*R*)-2,2-Difluoro-1-(furan-2-yl)but-3-en-1-ol [(*R*)-6f]. A light yellow oil, 0.25 g, yield 42% (calculated to 69% on the basis of 7:3 mixture of the reagents). R_f 0.80 (hexane/ethyl acetate = 8:1). $[\alpha]^{23}_{D} = -1.88$ (c 1.17, CHCl₃), 92% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.50 (d, J = 1.8 Hz, 1H), 6.51–6.50 (m, 1H), 6.47–6.45 (m, 1H), 6.13–5.96 (m, 1H), 5.78 (dt, J = 17.7 and 2.4 Hz, 1H), 5.60 (d, J = 11.1 Hz, 1H), 4.97 (td, J = 9.3 and 6.6 Hz, 1H), 2.86 (d, J = 6.6 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –108.90 (t, J = 10.8 Hz, 2F). ¹³C NMR (75 MHz, CDCl₃): δ 149.4, 143.0, 129.5 (t, J = 25.2 Hz), 121.8 (t, J = 8.5 Hz), 118.7 (t, J = 240.0 Hz), 110.6, 109.6, 70.4 (t, J = 31.6 Hz). MS EI: m/z = 174 [M⁺]. HRMS (ESI): calcd for C₈H₈F₂O₂ 174.0492, found 174.0488.

ASSOCIATED CONTENT

S Supporting Information

Copies of the NMR spectra of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: chandran@purdue.edu.

Present Address

[‡]Department of Chemistry, Nicolaus Copernicus University, Gagarina 7, 87–100 Toruń, Poland.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank the Herbert C. Brown Center for Borane Research for financial assistance of this project.

REFERENCES

(1) Ojima, I., Ed. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: West Sussex, UK, 2009.

(2) (a) Soloshonok, V. A., Ed. Enantiocontrolled synthesis of fluoroorganic compounds: stereochemical challenges and biomedical targets; Wiley: Chichester, UK, 1999. (b) O'Hagan, D. J. Fluorine Chem. 2010, 131, 1071.

(3) (a) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619.
(b) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martásek, P.; Roman, L. J.; Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229.

(4) Ramachandran, P. V.; Parthasarathy, G.; Gagare, P. D. Org. Lett. 2010, 12, 4474.

(5) (a) Ramachandran, P. V.; Tafelska-Kaczmarek, A.; Sakavuyi, K.; Chatterjee, A. Org. Lett. 2011, 13, 1302. (b) Ramachandran, P. V.; Tafelska-Kaczmarek, A.; Sakavuyi, K. Org. Lett. 2011, 13, 4044.
(c) Ramachandran, P. V.; Chatterjee, A. J. Fluorine Chem. 2009, 130, 144. (d) Ramachandran, P. V.; Chatterjee, A. Org. Lett. 2008, 10, 1195.
(6) Sauvetre, R.; Normant, J. F. Tetrahedron Lett. 1981, 22, 957.

(7) (a) Kennedy, J. W. J.; Hall, D. G. J. Org. Chem. 2004, 69, 4412.

(b) Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 4315.

(8) (a) Ramachandran, P. V., Ed. Asymmetric Fluoroorganic Chemistry; ACS Symposium Series 746; American Chemical Society: Washington,

The Journal of Organic Chemistry

DC, 2000. (b) Qing, F.-L.; Qiu, X. L. In *Current Fluoroorganic Chemistry: New Synthetic Direction, Technologies, Materials, and Biological Application*; Soloshonok, V. A., Mikami, K., Yamazaki, T., Welch, J. T., Honek, J. F., Eds.; ACS Symposium Series 949; American Chemical Society: Washington, DC, 2007; pp 305–322. (c) Audouard, C.; Fawcett, J.; Griffiths, G. A.; Percy, J. M.; Pintat, S.; Smith, C. A. Org. Biomol. Chem. 2004, 2, 528. (d) Bogen, S.; Arasappan, A.; Pan, W.; Ruan, S.; Padilla, A.; Saksena, A. K.; Girijavallabhan, V.; Njoroge, F. G. Bioorg. Med. Chem. Lett. 2008, 18, 4219.

(9) (a) Fujita, M.; Hiyama, T. J. Am. Chem. Soc. 1985, 107, 4085.
(b) Fujita, M.; Obayashi, M.; Hiyama, T. Tetrahedron 1988, 44, 4135.

(10) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T.; Nemoto, H. Tetrahedron 2000, 56, 8275.

(11) (a) Seyferth, D.; Simon, R. M.; Sepelak, D. J.; Klein, H. A. J. Org. Chem. **1980**, 45, 2273. (b) Seyferth, D.; Simon, R. M.; Sepelak, D. J.; Klein, H. A. J. Am. Chem. Soc. **1983**, 105, 4634.

(12) Seyferth, D.; Wursthorn, D. J. J. Organomet. Chem. 1979, 182, 455.

(13) Yang, Z.; Burton, D. J. J. Org. Chem. 1991, 56, 1037.

(14) Kirihara, M.; Kawasaki, M.; Katsumata, H.; Kakuda, H.; Shiro, M.; Kawabata, S. *Tetrahedron: Asymmetry* **2002**, *13*, 2283.

(15) Wuts, P. G. M.; Thompson, P. A.; Callen, G. R. J. Org. Chem. 1983, 48, 5398.

(16) Soundararajan, R.; Li, G.; Brown, H. C. J. Org. Chem. 1996, 61, 100.

(17) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586. (b) Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc.

2002, *124*, 12414. (c) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. **2003**, *125*, 10160.

(18) Yanai, H.; Okada, H.; Sato, A.; Okada, M.; Taguchi, T. *Tetrahedron Lett.* **2011**, *52*, 2997.

(19) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.

(20) Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23.

(21) (a) Brown, H. C.; Jadhav, P. K. Tetrahedron Lett. 1984, 25, 1215.
(b) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. (c) Narla,

G.; Brown, H. C. *Tetrahedron Lett.* **1997**, *38*, 219. (d) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. **2002**, *124*, 13644.

(22) (a) Ramachandran, P. V.; Madhi, S.; O'Donnell, M. J. *J. Fluorine Chem.* **2006**, 127, 1252. (b) Ramachandran, P. V.; Jennings, M. P. *J. Org. Chem.* **2007**, 128, 827.

(23) Konno, T.; Chae, J.; Tanaka, T.; Ishihara, T.; Yamanaka, H. Chem. Commun. 2004, 690.

(24) (a) Henne, A. L.; Nager, M. J. Am. Chem. Soc. 1951, 73, 1042.
(b) Drakesmith, F. G.; Stewart, O. J.; Tarrant, P. J. Org. Chem. 1967, 33, 280.

(25) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.

(26) Brown, H. C.; Zaidlewicz, M. Organic Syntheses via Boranes: Recent Developments; Aldrich Chemical Co.: Milwaukee, 2001; Vol. 2, p 92.

(27) Qing, F.-L.; Wan, D.-P. Tetrahedron 1998, 54, 14189.