91-97% ee

B‑(3,3-Difluoroallyl)diisopinocampheylborane for the Enantioselective Fluoroallylboration of Aldehydes

P. Veeraraghavan Ramachandran,* Agnieszka Tafelska-Kaczmarek,[‡] and Anamitra Chatterjee

Herbert C. Brown Center for Borane Re[sea](#page-3-0)rch, Department of Chemistry, Purdue [U](#page-3-0)niversity, 560 Oval Drive, West Lafayette, Indiana 47907-2084, United States

S Supporting Information

[ABSTRACT:](#page-3-0) The fluoroallylboration of aldehydes with B-(3,3-difluoroallyl) diisopinocampheylborane, which was prepared via the hydroboration of 1,1 difluoroallene, provides chiral 2,2-gem-difluorinated homoallylic alcohols in good yields and 91−97% ee.

 Γ luorine substitution often alters the reactivity and reaction
mechanism of organic molecules.¹ Medicinal chemists
undertake this exercise to alter the hislogical properties of such undertake this exercise to alter the biological properties of such molecules, with the aim of identifyi[n](#page-3-0)g more potent and bioavailable molecules.² Geminal difluorinated aliphatic fluoroorganic molecules are particularly attractive due to their unique pharmacological prop[ert](#page-3-0)ies.³ As part of our program involving fluoro-organic synthesis via boranes, 4 we had reported the preparation and reactions [o](#page-3-0)f racemic and chiral 2-benzyloxy- (3,3-difluoroallyl)boronates 1 and 2, r[es](#page-3-0)pectively (Figure 1), for 4

Figure 1. (3,3-Difluoroallyl)boronates.

We had also reported a low yield $(\leq 20\%)$ synthesis of the parent camphanediol $(3,3$ -difluoroallyl)boronate 4^{5b} from 2,2difluorovinyllithium⁶ and the corresponding camphanediol iodomethylboronate.⁷ The importance of the p[rod](#page-3-0)ucts 2,2 difluoro-1-aryl/alky[lb](#page-3-0)ut-3-en-1-ols as useful building blocks for the synthesis of bio[ac](#page-3-0)tive molecules, $⁸$ led us to re-examine the</sup> synthesis of racemic and chiral (3,3-difluoroallyl)boronate reagents 3 and 4. While racemic [2,2](#page-3-0)-difluoro-1-aryl/alkylbut-3-en-1-ols have been reported via the addition of gemdifluoroallylmetals $(Si,^{9} In,^{10} In,^{11} Sn,^{12} In^{13})$ to aldehydes and ketones, to the best of our knowledge, chiral 2,2-gemdifluorohomoallyl alco[h](#page-4-0)ols [ar](#page-4-0)e a[cce](#page-4-0)sse[d v](#page-4-0)ia [a l](#page-4-0)ipase-mediated enzymatic resolution of racemic alcohols.¹⁴ Reported herein are the improved synthesis of asymmetric (3,3-difluoroallyl) boronate, the failed asymmetric allyl[bor](#page-4-0)ation with 4, and finally, the successful preparation and reactions of difluoroallylborane-derived from α -pinene.

Diisopropyl (3,3-difluoroallyl)boronate (3) prepared via the homologation¹⁵ of 2,2-difluorovinyllithium⁶ with diisopropyl

iodomethylboronate¹⁶ (Scheme 1) was found to be unstable for storage. Hence, the difluoroallylboration of benzaldehyde (5a)

 $v^{1/2}B$

 $F \frac{1) \text{RCHO}}{2) [0]}$ R²

was examined with in situ generated reagents, and the optimal conditions were identified (Table 1).

The allylboration of benzaldehyde (5a) with 3 in THF at room temperature, monitored [by](#page-1-0) ¹¹B NMR spectroscopy (chemical shift change from δ 30 to 18 ppm), furnished 2,2difluoro-1-phenylbut-3-en-1-ol (6a) in only 15% yield. On the basis of Lewis acid catalyzed allylboration with allylboronates, 17 the reaction was examined in the presence of 10 mol % $Sc(OTf)_{3}$, which improved t[he](#page-4-0) yield to 43%. Raising the temperature to reflux further improved the yield to 67%. Increasing the catalyst loading to 20 mol % and the reaction time to 48 h did not improve the yield. Changing the catalyst to In(OTf)₃ (10 mol %) yielded 38% of the homoallylic alcohol. The influence of the solvent was then examined. Unlike the benzyloxy reagent 1, the parent reagent 3 was only sparingly soluble in pentane. The reaction failed in refluxing dichloromethane (48 h); refluxing in toluene decomposed the reagent.

With the standardized reaction conditions, the fluoroallylboration of additional aldehydes was carried out (Table 2).

Received: May 22, 2012 Published: September 13, 2012

Table 1. Difluoroallylboration of Benzaldehyde (5a) with 3; Optimization of Conditions^a

	н $\ddot{}$ 5a	'PrO 'PrO 3			OН 6a
entry	$L.A.^b$	solvent	temp $(^{\circ}C)$	time (h)	yield ^c $(\%)$
1		THF	rt	24	15
$\overline{2}$	Sc(OTf)	THF	rt	24	43
3	$Sc(OTf)$ ₃	THF	reflux	24	67
$\overline{4}$	In(OTf)	THF	reflux	24	38
5	$Sc(OTf)$ ₃	CH, Cl,	reflux	48	d
6	$Sc(OTf)$ ₃	toluene	reflux	24	e
7	$Sc(OTf)$ ₃	pentane			

 a Reactions were carried out with 1.5 equiv of crude reagent. b 10 mol % of the Lewis acid was used, unless otherwise stated. "Isolated yields" of pure products. ^dNo reaction observed. ^eDecomposition of reagent 3. f No reaction due to the poor solubility of the reagent.

Table 2. Difluoroallylboration of Aldehydes 5 with 3^a

entry	RCHO(5)	R	6	time (h)	yield ^b $(\%)$			
	5a	C_6H_5	6a	24	67			
2	5b	p -MeO-C ₆ H ₄	6b	48	33			
3	5c	2-Naphthyl	6с	38	25			
4	5d	$C_6H_5(CH_2)$	6d	48	62			
["] Reactions were carried out in THF at reflux with 1.5 equiv of crude reagent and 10 mol % of $Sc(OTf)_{3}$. ^b Isolated yields of pure products.								

Surprisingly, low yields, 33% and 25%, respectively, were obtained for the allylboration of p -anisaldehyde $(5b)$ and 2naphthaldehyde (5c). Hydrocinnamaldehyde (5d) afforded the product in 62% isolated yield. The factors influencing the low yield are not clear at this point, although similar homoallylic alcohols have been found to undergo the elimination of fluoride under basic conditions.¹⁸ It is noteworthy that diisopropyl $(3,3$ difluoroallyl)boronate (3) is less reactive than the 2-benzyloxysubstituted reagent 1. [Th](#page-4-0)is could be due to increased electron density of the vinylic ether, a fact which should favor the allyl transfer.

We were able to significantly improve upon our previous results,^{5b} enhancing the yield of $(1R,3S)$ -1,2,2-trimethylcyclopent-1,3-diyl (4R)-2-(3,3-difluoroprop-2-enyl)-4-phenyl-1,3,2 dioxab[oro](#page-3-0)lane (4) from \leq 20% to 80%, simply by decreasing the reaction temperature. Unlike the achiral reagent, 4 is stable to silica gel chromatography and the yield represents isolated yield of the pure reagent and further reactions were carried out using pure reagent. The fluoroallylboration of aldehydes with 4 was also facilitated by the presence of a Lewis acid, higher reaction temperature, and longer reaction times (Scheme 2). Allylborations were carried out with 1.25 equiv of reagent 4 in the presence of 10 mol % of $Sc(OTf)$ ₃ at reflux in THF and

Scheme 2. Asymmetric Difluoroallylboration of Aldehydes 5 with 4

were monitored by the ¹¹B NMR spectroscopy (chemical shift change from δ 33 to 22 ppm).

As in the case of the racemic fluoroallylboration (Table 1), no reaction took place in dichloromethane and decomposition was observed in toluene. Allylboration of benzaldehyde (5a) afforded the chiral homoallyl alcohol (R) -6a in 38% yield and surprisingly low 20% ee, as was determined by $^1\mathrm{H}$ and $^{19}\mathrm{F}$ NMR analysis of the corresponding α -methoxy α, α, α trifluoromethylphenyl acetates (Mosher esters).¹⁹ The configuration of the alcohol was assigned on the basis of the sign of the optical rotation of the alcohol, as re[por](#page-4-0)ted in the literature.¹⁴

The use of $In(OTf)$ ₃ (20 mol %) decreased the ee to 12%, but with [s](#page-4-0)imilarly poor yield (37%). Low enantioselectivity $(20%)$ was also observed for p-anisaldehyde $(5b)$, where the reaction required 4.5 days $(^{11}B$ NMR).

The disappointing results from chiral (3,3-difluoroallyl) boronates and the established success of pinane-mediated allyl-, crotyl-, and alkoxyallylborations²⁰ prompted the preparation of B-(3,3-difluoroallyl)diisopinocampheylborane and fluoroallylboration of aldehydes. Hydro[bo](#page-4-0)ration of substituted allenes have been utilized for the preparation of novel achiral and chiral allylboranes.²¹ Accordingly, we examined the hydroboration of 1,1-difluoroallene with racemic and chiral diisopinocampheylborane (Ipc, BH) (Scheme 3).

The successful, reagent-dependent, and regioselective hydroboration of a variety of fluo[ro](#page-2-0)olefins have been described by us earlier.²² Hydroboration of fluoroalkynes have also been reported in the literature.²³ However, there has been no report on th[e](#page-4-0) hydroboration of fluoroallenes. Accordingly, freshly prepared 1,1-difluoroalle[ne](#page-4-0), 24 was added to a suspension of (−)-Ipc2BH in diethyl ether at −78 °C and was warmed to 0 °C over 3 h, whereafte[r](#page-4-0) the reaction medium became homogeneous. The 11 B NMR spectrum revealed two peaks at δ 79 and 49 ppm in a 7:3 ratio, presumably corresponding to the difluoroallylborane 7 and (2,2-difluoro-1-methylvinyl) borane (on the basis of ¹¹B NMR of vinylboranes) (Scheme 3).

Benzaldehyde (5a) was added to the above mixture at −78 $^{\circ}$ C, and the reaction, which was monitored by 11 B N[MR](#page-2-0) spectroscopy, was complete within 4 h. The NMR spectrum revealed a broad peak at δ 50 ppm, along with a shoulder peak, presumably due to the unreacted vinylborane. Alkaline oxidative workup with hydrogen peroxide over 12 h at rt, provided the expected 2,2-difluoro-1-phenylbut-3-en-1-ol (6a) in 43% yield, based on the allylborane present in the medium. Since allylboration has been shown to be a fast reaction even at low temperatures,²⁵ the yield of 6a is most likely limited by the formation of the allylborane from hydroboration. ¹H and ¹⁹F NMR analysis of [th](#page-4-0)e Mosher ester derivative of 6a revealed an enantiomeric excess of 94%, and a configurational assignment of R.¹⁴ It is observed that the stereochemistry of the product of the reaction with difluoroallylborane 7 is the same as that of the nonfl[uo](#page-4-0)rinated analogue.²⁵

Solvents such as THF, pentane, and CH_2Cl_2 decreased the yield of the reaction. A[lth](#page-4-0)ough there was no change in the enantioselectivity, lowering the allylboration temperature to −100 °C improved the yield to 72%. The use of catalytic $Sc(OTf)_{3}$ did not improve the yield or enantioselectivity. Accordingly, further difluoroallylboration of a series of aldehydes with 7 was carried out at this temperature (Table 3). *p*-Anisaldehyde $(5b)$ provided (R) -6b in 71% yield and 93% ee. Similarly, high ee (94%) was obtained for 2-naphthaldehyde [\(](#page-2-0)5c) as well. While α , β -unsaturated aldehyde, cinnamaldehyde

Scheme 3. Preparation and Reaction of B-(3,3-Difluoroallyl)diisopinocampheylborane (7)

Table 3. Asymmetric Difluoroallylboration of Aldehydes 5 with 7^a in Et₂O

a
Reactions were carried out with 1 equiv of crude reagent over 4 h. between the carrier of their required rotation with those of between the optical rotation with those of known compounds.¹⁴ ^c Yields of pure products based on the number of equivalents of reagent in the mixture. d Determined by ${}^{1}H$ and ${}^{19}F$ NMR analysis of [Mos](#page-4-0)her esters.

(5e) afforded the product in 91% ee, hydrocinnamaldehyde (5d) afforded the highest ee, 97%, for the homoallylic alcohol in 76% yield. A heteroaromatic aldehyde, 2-furaldehyde (5f), provided the product in 69% yield and 92% ee. It is gratifying to note that pinane-derived reagent 7 provides very high ee for the allylboration, even with the presence of the fluorine atoms. In comparison, the camphor-derived allylboronate reagent 4 provides poor ee.

In conclusion, higher yields were achieved for the synthesis of racemic and chiral (3,3-difluoroallyl)boronates, although the allylboration results in poor yields and ee of the homoallyl alcohols. The hydroboration of 1,1-difluoroallene with diisopinocampheylborane provides a 7:3 mixture of the corresponding (3,3-difluoroallyl)- and (2,2-difluoro-1-methylvinyl) borane. Difluoroallylboration of representative aldehydes with B-(3,3-difluoroallyl)diisopinocampheylborane provides 2,2-gem-difluorinated homoallyl alcohols in good yields and high ee.

EXPERIMENTAL SECTION

General Information. Unless otherwise noted, all manipulations were carried out under inert atmosphere in flame-dried glassware. Tetrahydrofuran (THF) was freshly distilled before use from sodium benzophenone ketyl. All other chemicals and solvents were purchased commercially and used without further purification, unless otherwise noted.

The ${}^{1}H$, ${}^{19}F$, ${}^{13}C$, and ${}^{11}B$ nuclear magnetic resonance (NMR) spectra were plotted on 300 MHz spectrometer with Nalorac-quad probes using CDCl₃ as a solvent at room temperature. The NMR chemical shifts (δ) are reported in ppm. Abbreviations for ¹H and ¹⁹F NMR: $s = singlet$, $d = doublet$, $m = multiplet$, $b = broad$, $t = triplet$, $q =$ quartet. High-resolution mass spectra were obtained by electro spray impact ionization in combination with a single quadrupole mass analyzer. The reactions were monitored by TLC using silica gel F_{254} precoated plates. Flash chromatography was performed using flash grade silica gel (particle size: 40−63 μ m, 230 × 400 mesh). Optical rotations were measured on an automatic polarimeter at the Na ^D line $(\lambda = 589$ nm) using a 1 dm cell.

Preparation of diisopropyl iodomethylboronate,¹⁶ (1R,2R,3R,4S)-4iodomethyl-1,10,10-trimethyl-2-phenyl-3,5-dioxa-4-boratricyclo- $[5.2.1.0^{0,0}]$ decane,⁷ 1,1-difluoropropa-1,2-diene,^{2[4](#page-4-0)} (-)-diisopinocampheylborane²⁶ were achieved as reported.

1. General Pr[oc](#page-3-0)edure for the One-Pot Syn[the](#page-4-0)sis of Diisopropyl (3,3-Difluor[oa](#page-4-0)llyl)Boronate (3) and Procedure for the Difluoroallylboration of Aldehydes for the Preparation of 6a−d. To a solution of 1,1-difluoroethene (1.14 mL, 10.64 mmol) in THF (10 mL) and diethyl ether (2.5 mL) at −110 °C was added dropwise s-BuLi (3.80 mL, 1.4 M in cyclohexane, 5.32 mmol). The reaction mixture was stirred at the same temperature for 15 min and then diisopropyl iodomethylboronate (1.58 g, 5.85 mmol) was slowly added at −100 °C. After 40 min at this temperature, the mixture was stirred at rt for 2 h and filtered through a short bed of Celite. The solvents were removed under vacuum and the crude difluoroallylboronate 3 was then dissolved in THF (3.5 mL), aldehyde (3.52 mmol), and $Sc(OTf)$ ₃ (0.17 g, 0.35 mmol) were added, and the reaction mixture was refluxed for 24 h (¹¹B NMR shift from δ 29.5 to 18 ppm). The reaction was quenched with satd aq $NH₄Cl$ solution (5 mL), and the product was extracted with diethyl ether, washed with brine, dried (anhyd MgSO₄), filtered, and concentrated. The residue was purified by flash silica gel chromatography (hexane/ethyl acetate = 8:1) to yield homoallyl alcohols **6a−d**. The spectral data were consistent with those reported in the literature.^{8c,12,14,27}

2. General Procedure for the Synthesis of (1R,3S)-1,2,2- Trimethylcyclo[pent-1,3-d](#page-4-0)iyl (4R)-2-(3,3-difluoroprop-2-enyl)-4-phenyl-1,3,2-dioxaborolane (4). To a solution of 1,1-difluoroethene (0.85 mL, 7.96 mmol) in THF (7.5 mL) and diethyl ether (1.9 mL) at −110 °C was added dropwise s-BuLi (2.85 mL, 1.4 M in cyclohexane, 3.98 mmol). The reaction mixture was stirred at the same temperature for 15 min, and then (1R,2R,3R,4S)-4-iodomethyl-1,10,10-trimethyl-2 phenyl-3,5-dioxa-4-boratricyclo $[5.2.1.0^{0,0}]$ decane⁷ (1.74 g, 4.38 mmol) was slowly added at −100 °C. After 40 min at this temperature, the mixture was stirred at rt for 2 h and filtered t[hr](#page-3-0)ough a short bed of Celite. The solvents were removed and the residue was purified by flash silica gel chromatography (hexane/ethyl acetate = 8:1) to yield difluoroallylboronate 4 as a light yellow oil $(1.06 \text{ g}, 80\%)$. R_f 0.55 (hexane/ethyl acetate = 8:1). ^IH NMR (300 MHz, CDCl₃): δ 7.44– 7.29 (m, 5H), 4.75 (s, 1H), 4.19 (dtd, J = 25.5, 7.8, and 2.4 Hz, 1H), 2.16 (d, J = 5.1 Hz, 1H), 1.89–1.81 (m, 1H), 1.51 (d, J = 7.8 Hz, 1H), 1.22 (s, 3H), 1.20−1.15 (m, 2H), 1.10−1.00 (m, 1H), 0.97 (s, 3H), 0.94 (s, 3H). ¹⁹F NMR (282 MHz, CDCl₃): δ –91.73 (d, J = 50.5 Hz, 1F), −94.62 (dd, J = 50.5 and 25.4 Hz, 1F). 13C NMR (75 MHz, CDCl₃): δ 155.9 (t, J = 282.5), 141.4, 127.4, 127.2, 126.5, 95.9, 88.7, 73.3 (t, $J = 23.3$ Hz), 51.9, 50.1, 48.7, 29.4, 24.6, 23.4, 20.5, 9.2. ¹¹B NMR (96 MHz, CDCl₃): δ 33.2. MS EI: $m/z = 332$ [M⁺]. HRMS (ESI): calcd for $C_{19}H_{23}BF_2O_2$ 332.1759, found 332.1765.

General Procedure for the Difluoroallylboration of Aldehydes Using Reagent 4. To a solution of chiral (3,3-difluoroallyl) boronate 4 (1.25 mmol) in THF (1 mL) were added aldehyde 5 (1.00 mmol) and $Sc(OTf)_{3}$ (0.10 mmol), and the reaction mixture was refluxed for the desired time (shown in Table 3) $(^{11}B$ NMR shift from δ 33.2 to 22.4 ppm). The reaction was quenched with satd aq NH₄Cl solution (1.5 mL), and the product was extracted with diethyl ether, washed with brine, dried (anhyd. $MgSO₄$), filtered, and concentrated. The residue was purified by flash silica gel chromatography to yield homoallyl alcohol 6.

3. General Procedure for the One Pot Synthesis of B-(3,3- Difluoroallyl)Diisopinocampheylborane (7) and Representative Procedure for the Difluoroallylboration of Aldehydes for the Preparation of (R)-2,2-Difluoro-1-phenylbut-3-en-1-ol [(R)-6a]. To

a suspension of $(-)$ -Ipc₂BH²⁶ (1.25 g, 4.38 mmol) in Et₂O (10 mL) at -78 °C was added 1,1-difluoropropa-1,2-diene²⁴ (0.50 g, 6.57 mmol). After the mixture was stir[red](#page-4-0) for 3 h at 0 $^{\circ}$ C, the solid dissolved completely, indicating the completion of hydr[ob](#page-4-0)oration (11 B NMR δ 79 and 49 ppm, ratio 7:3). The reaction mixture was cooled to −100 $^{\circ}$ C, and benzaldehyde (5a) (0.46 g, 4.38 mmol) was added dropwise. The mixture was stirred at this temperature for 4 h (11 B NMR: δ 79 ppm to 50 ppm), oxidized with 3 M NaOH (3.2 mL) and 30% H_2O_2 (3.2 mL), and stirred at rt for 12 h. The product was extracted with diethyl ether, washed with brine, dried (anhyd. $MgSO₄$), filtered, and concentrated. The residue was purified by flash silica gel chromatography (hexane/ethyl acetate = 8:1) to yield homoallyl alcohol (R) -6a as a colorless viscous liquid (0.36 g, 45%, calculated to 72% on the basis of 7:3 mixture of the reagents). $R_f = 0.21$ (hexane/ ethyl acetate = 8:1). $[\alpha]^{23}$ _D = -16.96 (c 1.25, CHCl₃), 94% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester (lit.¹⁴ [α]²³ D = −14.7 (ι 1.13, CHCl₃), 79% ee). ¹H NMR (300 MHz, CDCl₃): δ 7.42−7.35 (m, 5H), 5.86 (ddd, J = 23.1, 17.4, and 11.1 Hz, [1H](#page-4-0)), 5.59 $(d, J = 17.4 \text{ Hz}, 1H)$, 5.46 $(d, J = 11.1 \text{ Hz}, 1H)$, 4.88 $(t, J = 9.6 \text{ Hz},$ 1H), 2.81 (bs, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –109.32 (dt, J = 246.4 and 10.4 Hz, 1F), -110.99 (dt, J = 246.4 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 135.9, 129.2 (t, J = 25.5 Hz), 128.6, 128.1, 127.5, 121.5 (t, $J = 8.7$ Hz), 119.5 (t, $J = 243.1$ Hz), 75.7 (td, $J = 29.6$ and 5.8 Hz). MS EI: $m/z = 184$ [M⁺]. HRMS (ESI): calcd for $C_{10}H_{10}F_2O$ 184.0700, found 184.0711.

 $(R)-2,2-Difluoro-1-(4-methoxyphenyl)but-3-en-1-ol$ $[(R)-6b].$ A colorless viscous liquid, 0.50 g, 44% (calculated to 71% on the basis of 7:3 mixture of the reagents). R_f 0.09 (hexane/ethyl acetate = 8:1). $[\alpha]^{23}$ _D = –19.75 (c 1.55, CHCl₃), 93% ee, determined by ¹ 8:1). $[\alpha]^{23}{}_{D} = -19.75$ (c 1.55, CHCl₃), 93% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester (lit.¹⁴ $[\alpha]^{23}{}_{D} = -20.2$ (c 1.01, CHCl₃), 94% ee). ¹H NMR (300 MHz, CDCl₃): δ 7.33 (d, J = 8.7 Hz, 2H), 6.91−6.86 (m, 2H), 5.86 (ddd, J = [23.](#page-4-0)4, 17.4, and 11.1 Hz, 1H), 5.59 (dtd, $J = 17.4$, 2.4, and 0.9 Hz, 1H), 5.46 (d, $J = 11.1$ Hz, 1H), 4.84 (td, $J = 9.6$ and 3.0 Hz, 1H), 3.81 (s, 3H), 2.63 (d, $J = 3.6$ Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –109.59 (dt, J = 245.9 and 10.4 Hz, 1F), -111.17 (dt, J = 245.9 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 159.7, 129.4 (t, J = 25.5 Hz), 128.8, 128.1, 121.3, 119.5 (t, J $= 242.8$ Hz), 113.4, 75.4 (td, J = 29.6 and 7.3 Hz), 55.1. MS EI: $m/z =$ 214 [M⁺]. HRMS (ESI): calcd for $C_{11}H_{12}F_2O_2$ 214.0805, found 214.0811.

(R)-2,2-Difluoro-1-(naphthalen-2-yl)but-3-en-1-ol [(R)-6c]. A light yellow oil, 0.53 g, 48% (calculated to 70% on the basis of 7:3 mixture of the reagents). R_f 0.33 (hexane/ethyl acetate = 8:2). $[\alpha]^{23}$ _D = −15.56 (c 1.08, CHCl₃), 94% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.89–7.83 (m, 4H), 7.55−7.49 (m, 3H), 5.88 (ddd, J = 23.4, 17.4, and 11.1 Hz, 1H), 5.61 (dt, $J = 17.1$ and 2.0 Hz, 1H), 5.46 (d, $J = 10.8$ Hz, 1H), 5.09 (t, J = 9.3 Hz, 1H), 2.62 (bs, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ −109.03 (dt, J = 246.7 and 10.4 Hz, 1F), −110.46 (dt, J = 246.7 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 133.3, 132.8, 129.2 (t, J = 25.5 Hz), 128.1, 127.8, 127.6, 127.0, 126.3, 126.2, 124.9, 121.6, 119.6 (t, J = 243.4 Hz), 75.9 (td, J = 29.7 and 6.7 Hz). MS EI: $m/z =$ 234 $[M^+]$. HRMS (ESI): calcd for $C_{14}H_{12}F_2O$ 234.0856, found 234.0859.

(R)-4,4-Difluoro-1-phenylhex-5-en-3-ol [(R)-6d]. A colorless liquid, 0.64 g, yield 53% (calculated to 76% on the basis of 7:3 mixture of the reagents). R_f 0.20 (hexane/ethyl acetate = 8:1). $[\alpha]^{23}$ _D = +33.82 (c 0.76, CHCl₃), 97% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.33–7.28 (m, 2H), 7.23−7.18 (m, 3H), 6.05−5.88 (m, 1H), 5.71 (d, J = 17.4 Hz, 1H), 5.54 (d, J = 11.1 Hz, 1H), 3.82−3.73 (m, 1H), 2.93 (ddd, J = 14.1, 9.3, and 4.8 Hz, 1H), 2.76–2.66 (m, 1H), 1.99 (d, J = 5.1 Hz, 1H), 1.96– 1.87 (m, 1H), 1.84–1.71 (m, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ −110.26 (dt, J = 248.7 and 10.1 Hz, 1F), −113.71 (dt, J = 248.7 and 10.4 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 141.0, 129.5 (t, J = 25.8) Hz), 128.4, 126.0, 121.3 (t, $J = 8.8$ Hz), 120.2 (t, $J = 241.5$ Hz), 72.5 $(t, J = 29.0 \text{ Hz})$, 31.6, 31.4. MS EI: $m/z = 212 \text{ [M}^+]$. HRMS (ESI): calcd for $C_{12}H_{14}F_2O$ 212.1013, found 212.1015.

(R,E)-4,4-Difluoro-1-phenylhexa-1,5-dien-3-ol [(R)-6e]. A colorless oil, 0.39 g, yield 48% (calculated to 70% on the basis of 7:3 mixture of the reagents). R_f 0.15 (hexane/ethyl acetate = 9:1). $\lceil \alpha \rceil^{23}$ $\vert n$ = +7.22 (c 1.15, CHCl₃), 91% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.43–7.28 $(m, 5H)$, 6.78 (d, J = 15.6 Hz, 1H), 6.20 (dd, J = 15.6 and 5.7 Hz, 1H), 6.01 (ddd, J = 23.1, 17.4, and 11.1 Hz, 1H), 5.75 (dtd, J = 17.4 Hz, 2.1) and 0.9 Hz, 1H), 5.57 (d, J = 11.1 Hz, 1H), 4.57–4.46 (m, 1H), 2.23 (d, J = 5.1 Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ –109.99 (dt, J = 247.8 and 10.1 Hz, 1F), -112.10 (dt, $J = 247.8$ and 10.1 Hz, 1F). ¹³C NMR (75 MHz, CDCl₃): δ 135.8, 134.5, 129.5 (t, J = 25.4 Hz), 128.5, 128.2, 126.6, 123.0, 121.6 (t, $J = 9.0$ Hz), 119.3 (t, $J = 242.5$ Hz), 74.4 (td, $J = 29.8$ and 4.8 Hz). MS EI: $m/z = 210$ [M⁺]. HRMS (ESI): calcd for $C_{12}H_{12}F_2O$ 210.0856, found 210.0859.

(R)-2,2-Difluoro-1-(furan-2-yl)but-3-en-1-ol [(R)-6f]. A light yellow oil, 0.25 g, yield 42% (calculated to 69% on the basis of 7:3 mixture of the reagents). R_f 0.80 (hexane/ethyl acetate = 8:1). $[\alpha]^2$ 23 _D = -1.88 (c 1.17, CHCl₃), 92% ee, determined by ¹H and ¹⁹F NMR analysis of Mosher ester. ¹H NMR (300 MHz, CDCl₃): δ 7.50 (d, J = 1.8 Hz, 1H), 6.51−6.50 (m, 1H), 6.47−6.45 (m, 1H), 6.13−5.96 (m, 1H), 5.78 (dt, J = 17.7 and 2.4 Hz, 1H), 5.60 (d, J = 11.1 Hz, 1H), 4.97 (td, $J = 9.3$ and 6.6 Hz, 1H), 2.86 (d, $J = 6.6$ Hz, 1H). ¹⁹F NMR (282 MHz, CDCl₃): δ -108.90 (t, J = 10.8 Hz, 2F). ¹³C NMR (75 MHz, CDCl₃): δ 149.4, 143.0, 129.5 (t, J = 25.2 Hz), 121.8 (t, J = 8.5 Hz), 118.7 (t, $J = 240.0$ Hz), 110.6, 109.6, 70.4 (t, $J = 31.6$ Hz). MS EI: $m/z = 174$ [M⁺]. HRMS (ESI): calcd for $C_8H_8F_2O_2$ 174.0492, found 174.0488.

■ ASSOCIATED CONTENT

3 Supporting Information

Copies of the NMR spectra of the products. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: chandran@purdue.edu.

Present Address

‡ Depart[ment of Chemistry, Ni](mailto:chandran@purdue.edu)colaus Copernicus University, Gagarina 7, 87−100 Toruń, Poland.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

We thank the Herbert C. Brown Center for Borane Research for financial assistance of this project.

■ REFERENCES

(1) Ojima, I., Ed. Fluorine in Medicinal Chemistry and Chemical Biology; Wiley-Blackwell: West Sussex, UK, 2009.

(2) (a) Soloshonok, V. A., Ed. Enantiocontrolled synthesis of fluoroorganic compounds: stereochemical challenges and biomedical targets; Wiley: Chichester, UK, 1999. (b) O'Hagan, D. J. Fluorine Chem. 2010, 131, 1071.

(3) (a) Tozer, M. J.; Herpin, T. F. Tetrahedron 1996, 52, 8619. (b) Xue, F.; Li, H.; Delker, S. L.; Fang, J.; Martasek, P.; Roman, L. J.; ́

Poulos, T. L.; Silverman, R. B. J. Am. Chem. Soc. 2010, 132, 14229. (4) Ramachandran, P. V.; Parthasarathy, G.; Gagare, P. D. Org. Lett. 2010, 12, 4474.

(5) (a) Ramachandran, P. V.; Tafelska-Kaczmarek, A.; Sakavuyi, K.; Chatterjee, A. Org. Lett. 2011, 13, 1302. (b) Ramachandran, P. V.; Tafelska-Kaczmarek, A.; Sakavuyi, K. Org. Lett. 2011, 13, 4044. (c) Ramachandran, P. V.; Chatterjee, A. J. Fluorine Chem. 2009, 130, 144. (d) Ramachandran, P. V.; Chatterjee, A. Org. Lett. 2008, 10, 1195. (6) Sauvetre, R.; Normant, J. F. Tetrahedron Lett. 1981, 22, 957.

(7) (a) Kennedy, J. W. J.; Hall, D. G. J. Org. Chem. 2004, 69, 4412.

(b) Lira, R.; Roush, W. R. Org. Lett. 2007, 9, 4315.

(8) (a) Ramachandran, P. V., Ed. Asymmetric Fluoroorganic Chemistry; ACS Symposium Series 746; American Chemical Society: Washington,

The Journal of Organic Chemistry Note

DC, 2000. (b) Qing, F.-L.; Qiu, X. L. In Current Fluoroorganic Chemistry: New Synthetic Direction, Technologies, Materials, and Biological Application; Soloshonok, V. A., Mikami, K., Yamazaki, T., Welch, J. T., Honek, J. F., Eds.; ACS Symposium Series 949; American Chemical Society: Washington, DC, 2007; pp 305−322. (c) Audouard, C.; Fawcett, J.; Griffiths, G. A.; Percy, J. M.; Pintat, S.; Smith, C. A. Org. Biomol. Chem. 2004, 2, 528. (d) Bogen, S.; Arasappan, A.; Pan, W.; Ruan, S.; Padilla, A.; Saksena, A. K.; Girijavallabhan, V.; Njoroge, F. G. Bioorg. Med. Chem. Lett. 2008, 18, 4219.

(9) (a) Fujita, M.; Hiyama, T. J. Am. Chem. Soc. 1985, 107, 4085. (b) Fujita, M.; Obayashi, M.; Hiyama, T. Tetrahedron 1988, 44, 4135.

(10) Kirihara, M.; Takuwa, T.; Takizawa, S.; Momose, T.; Nemoto, H. Tetrahedron 2000, 56, 8275. (11) (a) Seyferth, D.; Simon, R. M.; Sepelak, D. J.; Klein, H. A. J. Org.

Chem. 1980, 45, 2273. (b) Seyferth, D.; Simon, R. M.; Sepelak, D. J.; Klein, H. A. J. Am. Chem. Soc. 1983, 105, 4634.

(12) Seyferth, D.; Wursthorn, D. J. J. Organomet. Chem. 1979, 182, 455.

(13) Yang, Z.; Burton, D. J. J. Org. Chem. 1991, 56, 1037.

(14) Kirihara, M.; Kawasaki, M.; Katsumata, H.; Kakuda, H.; Shiro, M.; Kawabata, S. Tetrahedron: Asymmetry 2002, 13, 2283.

(15) Wuts, P. G. M.; Thompson, P. A.; Callen, G. R. J. Org. Chem. 1983, 48, 5398.

(16) Soundararajan, R.; Li, G.; Brown, H. C. J. Org. Chem. 1996, 61, 100.

(17) (a) Kennedy, J. W. J.; Hall, D. G. J. Am. Chem. Soc. 2002, 124, 11586. (b) Ishiyama, T.; Ahiko, T.-a.; Miyaura, N. J. Am. Chem. Soc.

2002, 124, 12414. (c) Lachance, H.; Lu, X.; Gravel, M.; Hall, D. G. J. Am. Chem. Soc. 2003, 125, 10160.

(18) Yanai, H.; Okada, H.; Sato, A.; Okada, M.; Taguchi, T. Tetrahedron Lett. 2011, 52, 2997.

(19) Dale, J. A.; Dull, D. L.; Mosher, H. S. J. Org. Chem. 1969, 34, 2543.

(20) Ramachandran, P. V. Aldrichimica Acta 2002, 35, 23.

(21) (a) Brown, H. C.; Jadhav, P. K. Tetrahedron Lett. 1984, 25, 1215.

(b) Brown, H. C.; Narla, G. J. Org. Chem. 1995, 60, 4686. (c) Narla, G.; Brown, H. C. Tetrahedron Lett. 1997, 38, 219. (d) Flamme, E. M.; Roush, W. R. J. Am. Chem. Soc. 2002, 124, 13644.

(22) (a) Ramachandran, P. V.; Madhi, S.; O'Donnell, M. J. J. Fluorine Chem. 2006, 127, 1252. (b) Ramachandran, P. V.; Jennings, M. P. J. Org. Chem. 2007, 128, 827.

(23) Konno, T.; Chae, J.; Tanaka, T.; Ishihara, T.; Yamanaka, H. Chem. Commun. 2004, 690.

(24) (a) Henne, A. L.; Nager, M. J. Am. Chem. Soc. 1951, 73, 1042. (b) Drakesmith, F. G.; Stewart, O. J.; Tarrant, P. J. Org. Chem. 1967, 33, 280.

(25) Racherla, U. S.; Brown, H. C. J. Org. Chem. 1991, 56, 401.

(26) Brown, H. C.; Zaidlewicz, M. Organic Syntheses via Boranes: Recent Developments; Aldrich Chemical Co.: Milwaukee, 2001; Vol. 2, p 92.

(27) Qing, F.-L.; Wan, D.-P. Tetrahedron 1998, 54, 14189.